MECHANISM OF SOLID STATE REACTION BETWEEN SrCO_3 AND SiO_2 Osamu YAMAGUCHI, Kazuhide YABUNO, Kiyoshi TAKEOKA, and Kiyoshi SHIMIZU Department of Applied Chemistry, Faculty of Engineering, Doshisha University, Karasuma-Imadegawa, Kamigyo-ku, Kyoto 602 Metastable SrSiO_3 was formed during the course of the solid state reaction of SrCO_3 and SiO_2 . The reaction mechanism was investigated by means of DTA and X-ray diffraction analysis. It was found that stable SrSiO_3 is formed via two processes: (a) transformation of metastable into stable SrSiO_3 ; (b) solid state reaction between $\mathrm{Sr}_2\mathrm{SiO}_4$ and SiO_2 . Though SrSiO₃ has been known only in the pseudo-wollastonite modification, 1) Takahashi and Roy²⁾ suggested that a new modification is obtained by heating the SrSiO₃ glass prepared by the splat-cooled method. Yamaguchi and Shimizu³⁾ reported that this compound, apparently metastable, is formed at 850-910 °C from the mixed powder prepared by the alkoxy-method. In the present study, it was found that metastable SrSiO₃ is formed during the course of the solid state reaction between an equimolar mixture of SrCO₃ and SiO₂. A reaction mechanism was investigated by means of DTA and X-ray diffraction analysis using Cu Kw radiation. Reagent-grade chemicals were used as starting materials. Strontium carbonate and amorphous silica were pre-heated for 3 h at temperatures of 500 and 600 °C, respectively. The equimolar mixture was weighed, and then ball-milled in a polyethylene pot containing agate balls for 20 h. No liquid medium was used. The average particle size of the mixed powder is ca. 1.7 μ m. The DTA of the mixed powder was carried out in air from room temperature to 1300 °C(Fig. 1). Four reactions were observed at 730-970 °C, 860-910 °C, 980-1055 °C, and 1180-1300 °C. The X-ray diffraction analysis confirmed that the first endothermic peak(730-970 °C) is due to the formation of $\mathrm{Sr}_2\mathrm{SiO}_4$ and the second(1180-1300 °C) is due to that of stable SrSiO_3 by the solid state reaction between $\mathrm{Sr}_2\mathrm{SiO}_4$ and SiO_2 . On the other hand, two exothermic reactions at 860-910 °C and 980-1055 °C were found to be the formation of metastable SrSiO_3 and the transformation of metastable into stable SrSiO_3 , respectively. Table 1 shows the results identified by X-ray diffraction analysis for specimens obtained by rapid quenching to room temperature after heating up to a definite temperature at the rate of 10 °c/min. No significant changes of the mixed powder were observed up to 700 °C. The X-ray diffraction peaks corresponding to $\mathrm{Sr_2SiO_4}$ appeared after heating at 730 °C for 5 min, and the intensity increased up to 970 °C. According to Jander and Wuhrer, 4) $\mathrm{Sr_2SiO_4}$ is always the first product formed from the mixture at any $\mathrm{Sr/Si}$ ratio. The present result is consistent with that of Jander et al. The peaks of $\mathrm{SrCO_3}$ as a starting material disappeared at 970 °C. Irrespective of the formation of $\mathrm{Sr_2SiO_4}$, metastable $\mathrm{SrSiO_3}^{2,3}$) was formed in the temperature range Fig. 1 DTA curve for the equimolar mixture of SrCO₃ and SiO₂. Sample weight: 80 mg, Heating rate:10 °C/min. Arrows show the temperatures at which the starting material was heated in order to obtain several specimens for X-ray diffraction analysis. Table 1 Results identified by X-ray diffraction analysis for specimens heated at various temperatures. | Temperature(°C) | Phase | |-----------------|---| | 730-860 | SrCO ₃ , Sr ₂ SiO ₄ | | 860-970 | Srco_3 , $\operatorname{Sr}_2\operatorname{Sio}_4$, metastable SrSio_3 | | 970-980 | $\mathrm{Sr_2Sio}_4$, metastable SrSio_3 | | 980-1055 | $\mathrm{Sr_2Sio_4}$, metastable $\mathrm{SrSio_3}$, stable $\mathrm{SrSio_3}$ | | 1055-1300 | Sr ₂ SiO ₄ , stable SrSiO ₃ | The single phase of stable $SrSiO_3$ was obtained by heating at 1300 °C for 5 h. Fig. 2 Results of X-ray diffraction analysis during the reaction at 950 $^{\circ}\text{C.}$ Fig. 3 Results of X-ray diffraction analysis during the reaction at 1200 °C. $\text{O:Sr}_2\text{SiO}_4, \quad \bullet : \text{stable SrSiO}_3, \quad \bullet : \text{metastable SrSiO}_3.$ of 860 to 910 °C, and transformed to stable SrSiO_3 between 980 and 1055 °C. The intensity of stable SrSiO_3 above 1180 °C increased gradually in inverse proportion to that of $\mathrm{Sr}_2\mathrm{SiO}_4$, and the specimen heated at 1300 °C for 5 h showed an X-ray diffraction pattern of only stable SrSiO_3 . It is important to consider two processes for the formation of stable SrSiO3: (a) transformation of metastable into stable SrSiO3; (b) solid state reaction between $\mathrm{Sr_2SiO_4}$ and $\mathrm{SiO_2}$. Figure 2 shows the results of X-ray diffraction analysis of the specimens heated at various reaction times at 950 °C. The fractions of $\mathrm{Sr}_2\mathrm{SiO}_4$, metastable $SrSiO_3$, and stable $SrSiO_3$ were determined from the heights of d=2.86 Å, d=2.68 $\mathring{\textbf{A}}$, and d=3.57 $\mathring{\textbf{A}}$, respectively, in comparison with those of the well-formed specimens, which were obtained by heating the mixed powder at 1000 °C 1 h for $\mathrm{Sr_2SiO_4}$, 910 °C 1 h for metastable $SrSiO_3$, and 1300 °C 5 h for stable $SrSiO_3$. The fraction of Sr_2SiO_4 increased with the lapse of time regardless of the formation of SrSiO3. This result suggests that Sr_2SiO_4 was directly formed by the reaction between $SrCO_3$ and SiO_2 , not from $\mathrm{SrSiO_3}$ and $\mathrm{SrCO_3}$. The transformation of metastable into stable $\mathrm{SrSiO_3}$ was observed from 5 to 120 min, and finally the fraction of stable $SrSiO_3$ was found to be 33.3 ± 0.2 %. Reaction isotherms above 1180 °C showed that the residual fraction, 66.7 ± 0.2 %, is formed by the solid state reaction between Sr_2SiO_4 and SiO_2 (Fig. 3). From the above mentioned results and the DTA data shown in Fig. 1, the reaction mechanism can be proposed as follows. $$2SrCO_3 + SiO_2 \xrightarrow{730-970 \text{ °C}} Sr_2SiO_4 + 2CO_2$$ (1) $$SrCO_3 + SiO_2 \xrightarrow{860-910 °C} SrSiO_3 (metastable) + CO_2$$ (2) $$SrSiO_{3} \text{(metastable)} \xrightarrow{\text{transformation}} SrSiO_{3} \text{(stable)}$$ $$980-1055 \text{ °C}$$ (3) $$\text{Sr}_2\text{SiO}_4 + \text{SiO}_2 \xrightarrow{\text{solid state reaction}} 2\text{SrSiO}_3 \text{(stable)}$$ (4) Effects of ball-milling and atmosphere on the reaction and the kinetics on the formation of $\mathrm{Sr}_2\mathrm{SiO}_4$ and SrSiO_3 are now under investigation and will be reported soon. ## References - 1) E. T. Carson and L. S. Wells, J. Res. Nat. Bur. Stand., <u>51</u>, 73(1953). - 2) T. Takahashi and R. Roy, J. Am. Ceram. Soc., <u>58</u>, 348(1975). - 3) O. Yamaguchi, K. Matumoto, and K. Shimizu, Bull. Chem. Soc. Jpn., <u>52</u>, 237(1979). - 4) W. Jander and J. Wuhrer, Z. Anorg. Allg. Chem., 226, 225(1936). (Received January 30, 1979)